Classification of Rectifying Space-Like Submanifolds in Pseudo-Euclidean Spaces

Bang-Yen Chen* and Yun Myung Oh

(Communicated by Kazım İlarslan)

ABSTRACT

The notions of rectifying subspaces and of rectifying submanifolds were introduced in [B.-Y. Chen, Int. Electron. J. Geom 9 (2016), no. 2, 1–8]. More precisely, a submanifold in a Euclidean m-space \mathbb{E}^m is called a rectifying submanifold if its position vector field always lies in its rectifying subspace. Several fundamental properties and classification of rectifying submanifolds in Euclidean space were obtained in [B.-Y. Chen, op. cit.].

In this present article, we extend the results in [B.-Y. Chen, op. cit.] to rectifying space-like submanifolds in a pseudo-Euclidean space with arbitrary codimension. In particular, we completely classify all rectifying space-like submanifolds in an arbitrary pseudo-Euclidean space with codimension greater than one.

Keywords: Rectifying submanifold; rectifying subspace; pseudo-Euclidean space; concurrent vector field; space-like submanifold; position vector field.

AMS Subject Classification (2010): Primary: 53C40; Secondary: 53C42.

1. Introduction

Let \mathbb{E}^3 denote the Euclidean 3-space with its inner product $\langle \ , \ \rangle$. Consider a unit-speed space curve $x : I \to \mathbb{E}^3$, where $I = (\alpha, \beta)$ is a real interval. Let x denote the position vector field of x and x' be denoted by t.

It is possible, in general, that $t'(s) = 0$ for some s; however, we assume that this never happens. Then we can introduce a unique vector field n and positive function κ so that $t' = \kappa n$. We call t' the curvature vector field, n the principal normal vector field, and κ the curvature of the curve. Since t is of constant length, n is orthogonal to t. The binormal vector field is defined by $b = t \times n$, which is a unit vector field orthogonal to both t and n. One defines the torsion τ by the equation $b' = -\tau n$.

The famous Frenet-Serret equations are given by

$$
\begin{align*}
t' &= \kappa n \\
n' &= -\kappa t + \tau b \\
b' &= -\tau n.
\end{align*}
$$

At each point of the curve, the planes spanned by $\{t, n\}$, $\{t, b\}$, and $\{n, b\}$ are known as the osculating plane, the rectifying plane, and the normal plane, respectively.

From elementary differential geometry it is well known that a curve in \mathbb{E}^3 lies in a plane if its position vector lies in its osculating plane at each point, and it lies on a sphere if its position vector lies in its normal plane at each point. A curve in the Euclidean 3-space is called a rectifying curve if its position vector field always lies in its rectifying plane (cf. [3]). Rectifying curves have many interesting properties. Such curves have been studied by many authors, see for instance, [1, 3, 10, 9, 13, 14, 15] among many others.

In [6], the first author introduced the notion of rectifying subspaces for Euclidean submanifolds. As a natural extension of rectifying curves, the first author defined the notion of rectifying submanifolds as Euclidean submanifolds whose position vector field always lies in its rectifying subspace [6]. Many fundamental properties of rectifying submanifolds are obtained in [6, 7]. In particular, the first author proved that a Euclidean
submanifold is rectifying if and only if the tangential component of its position vector field is a concurrent vector field. Furthermore, he completely determined rectifying submanifolds in a Euclidean space with arbitrary codimension.

In this article we extend the results of [6] to rectifying space-like submanifolds in a pseudo-Euclidean space with arbitrary codimension as a supplement to [6]. In particular, we completely classify all rectifying space-like submanifolds in an arbitrary pseudo-Euclidean space.

2. Preliminaries

For general references on submanifolds in pseudo-Riemannian manifolds, we refer to [5, 8, 16]. Let \(E^n_i \) denote the pseudo-Euclidean \(n \)-space equipped with the canonical pseudo-Euclidean metric \(g_0 \) of index \(i \) given by

\[
g_0 = - \sum_{r=1}^{i} du_r^2 + \sum_{t=i+1}^{m} du_t^2,
\]

where \((u_1, \ldots, u_m)\) is a rectangular coordinate system of \(E^n_i \).

Let \(x : M \to E^n_i \) be an isometric immersion of a pseudo-Riemannian \(n \)-manifold \(M \) into \(E^n_i \). For a point \(p \in M \), we denote by \(T_pM \) and \(T^\perp_p M \) the tangent and the normal spaces at \(p \). There is a natural orthogonal decomposition:

\[
T_p E^n_i = T_p M \oplus T^\perp_p M.
\]

Denote by \(\nabla \) and \(\tilde{\nabla} \) the Levi-Civita connections of \(M \) and \(E^n_i \), respectively. The formulas of Gauss and Weingarten are given respectively by

\[
\tilde{\nabla}_X Y = \nabla_X Y + h(X, Y),
\]

\[
\tilde{\nabla}_X \xi = -A_\xi X + D_X \xi
\]

for vector fields \(X, Y \) tangent to \(M \) and \(\xi \) normal to \(M \), where \(h \) is the second fundamental form, \(D \) the normal connection, and \(A \) the shape operator of \(M \).

For a given point \(p \in M \), the first normal space, of \(M \) in \(E^n_i \), denoted by \(\text{Im} h_p \), is the subspace defined by

\[
\text{Im} h_p = \text{Span}\{ h(X, Y) : X, Y \in T_p M \}.
\]

For each normal vector \(\xi \) at \(p \), the shape operator \(A_\xi \) is an endomorphism of \(T_p M \). The second fundamental form \(h \) and the shape operator \(A \) are related by

\[
\langle A_\xi X, Y \rangle = \langle h(X, Y), \xi \rangle,
\]

where \(\langle , \rangle \) denotes the scalar product on \(M \) as well as on the ambient space.

The equation of Gauss of \(M \) in \(E^n_i \) is given by

\[
R(X, Y; Z, W) = \langle h(X, W), h(Y, Z) \rangle - \langle h(X, Z), h(Y, W) \rangle
\]

for \(X, Y, Z, W \) tangent to \(M \), where \(R \) denotes the curvature tensors of \(M \).

The covariant derivative \(\nabla h \) of \(h \) with respect to the connection on \(TM \oplus T^\perp M \) is defined by

\[
(\tilde{\nabla}_X h)(Y, Z) = D_X (h(Y, Z)) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z).
\]

The equation of Codazzi is

\[
(\tilde{\nabla}_X h)(Y, Z) = (\tilde{\nabla}_Y h)(X, Z).
\]

It follows from the definition of a rectifying curve \(x : I \to E^n \) that the position vector field \(x \) of \(x \) satisfies

\[
x(s) = \lambda(s) t(s) + \mu(s) b(s)
\]

for some functions \(\lambda \) and \(\mu \).
For a curve \(x : I \to \mathbb{E}^3 \) with \(n(s_0) \neq 0 \) at \(s_0 \in I \), the first normal space at \(s_0 \) is the line spanned by the principal normal vector \(n(s_0) \). Hence, the rectifying plane at \(s_0 \) is nothing but the plane orthogonal to the first normal space at \(s_0 \). Therefore, for a submanifold \(M \) of \(\mathbb{E}^n \) and a point \(p \in M \), we call the subspace of \(T_p \mathbb{E}^n \), orthogonal complement to the first normal space \(\text{Im} \ h_p \), the rectifying space of \(M \) at \(p \) (see [6]).

We make the following definition as in [6].

Definition 2.1. A pseudo-Riemannian submanifold \(M \) of a pseudo-Euclidean space \(\mathbb{E}^n \) is called a rectifying submanifold if the position vector field \(x \) of \(M \) always lies in its rectifying space. In other words, \(M \) is a rectifying submanifold if and only if

\[
\langle x(p), \text{Im} \ h_p \rangle = 0
\]

holds at every \(p \in M \).

3. Lemmas

A tangent vector \(v \) of a pseudo-Riemannian manifold \(\tilde{M}^m \) is called space-like (respectively, time-like) if \(v = 0 \) or \(\langle v, v \rangle > 0 \) (respectively, \(\langle v, v \rangle < 0 \)). A vector \(v \) is called light-like or null if \(v \neq 0 \) and \(\langle v, v \rangle = 0 \).

The light cone \(LC \) of \(\mathbb{E}^n \) is defined by

\[
LC = \{ v \in \mathbb{E}^n : \langle v, v \rangle = 0 \}.
\]

Let \(r \) be a positive number. We put

\[
S^i_k(r^2) = \{ x \in \mathbb{E}^{k+1} : \langle x, x \rangle = r^2 \}, \quad i > 0,
\]

\[
H^k_i(-r^2) = \{ x \in \mathbb{E}^{k+1} : \langle x, x \rangle = -r^2 \}, \quad i > 0,
\]

\[
H^k_i(c) = \{ x \in \mathbb{E}^{k+1} : \langle x, x \rangle = -r^2 \quad \text{and} \quad x_1 > 0 \},
\]

\[
S^i_k(r^2) \quad \text{(respectively, } H^k_i(-r^2)) \text{ is a pseudo-Riemannian manifolds of curvature } 1/r^2 \text{ (respectively, } -1/r^2) \text{ with index } i. \text{ The } S^i_k(r^2) \text{ (respectively, } H^k_i(-r^2)) \text{ is known as a pseudo-sphere (respectively, pseudo-hyperbolic space).}
\]

The pseudo-Riemannian manifolds \(\mathbb{E}^k_1, S^i_k(c), H^k_i(c) \) are the standard models of Lorentzian space forms. In particular, \(\mathbb{E}^k_1, S^i_k(c), H^k_1(c) \) are the standard models of indefinite real space forms.

A submanifold \(M \) of \(\mathbb{E}^m \) is called space-like if each tangent vector of \(M \) is space-like.

By a cone in \(\mathbb{E}^m \) with vertex at the origin \(o \in \mathbb{E}^m \) we mean a ruled submanifold generated by a family of half lines initiated at \(o \). A submanifold of \(\mathbb{E}^m \) is called a conic submanifold with vertex at \(o \) if it is an open portion of a cone with vertex at \(o \).

For a space-like submanifold \(M \) of \(\mathbb{E}^m \), there exists a natural orthogonal decomposition of the position vector field \(x \) at each point; namely,

\[
x = x^T + x^N,
\]

where \(x^T \) and \(x^N \) denote the tangential and normal components of \(x \), respectively.

We put

\[
|x^T|^2 = \langle x^T, x^T \rangle, \quad |x^N|^2 = \langle x^N, x^N \rangle.
\]

Lemma 3.1. Let \(M \) be a pseudo-Riemannian submanifold of the pseudo-Euclidean space \(\mathbb{E}^m \). If the position vector field \(x \) of \(M \) in \(\mathbb{E}^m \) is either space-like or time-like, then \(x = x^T \) holds identically if and only if \(M \) is a conic submanifold with the vertex at the origin.

Proof. Let \(M \) be a pseudo-Riemannian submanifold of \(\mathbb{E}^m \). Assume that the position vector field \(x \) of \(M \) in \(\mathbb{E}^m \) is either space-like or time-like. If \(x = x^T \) holds identically, then \(e_1 = x/|x| \) is a unit vector field.

Put \(x = \rho e_1 \). Then we get

\[
\tilde{\nabla}_{e_1} x = e_1, \quad \tilde{\nabla}_{e_1} x = (e_1 \rho)e_1 + \rho \tilde{\nabla}_{e_1} e_1.
\]

Since \(\tilde{\nabla}_{e_1} e_1 \) is perpendicular to \(e_1 \), we find from (3.6) that \(\tilde{\nabla}_{e_1} e_1 = 0 \). Therefore the integral curves of \(e_1 \) are some open portions of generating lines in \(\mathbb{E}^m \). Moreover, because \(x = x^T \), the generating lines given by the integral curves of \(e_1 \) pass through the origin. Consequently, \(M \) is a conic submanifold with the vertex at the origin.

The converse is clear. \(\square \)
We recall the following definition of concurrent vector fields.

Definition 3.1. A non-trivial vector field \(C \) on a Riemannian (or more generally, on a pseudo-Riemannian) manifold \(M \) is called a concurrent vector field if it satisfies

\[
\nabla_X C = X
\]

(3.7)

for any vector \(X \) tangent to \(M \), where \(\nabla \) is the Levi-Civita connection of \(M \).

Remark 3.1. Since the position vector field of the pseudo-Euclidean space \(\mathbb{E}^m_\mathbb{E} \) is a concurrent vector field, it follows that the position vector field \(\mathbf{x} \) of any pseudo-Riemannian submanifold \(M \) in \(\mathbb{E}^m_\mathbb{E} \) satisfies

\[
\nabla_Z \mathbf{x} = Z \tag{3.8}
\]

for any \(Z \in TM \), where \(\nabla \) is the Levi-Civita connection of \(\mathbb{E}^m_\mathbb{E} \).

Lemma 3.2. Let \(M \) be a pseudo-Riemannian submanifold of \(\mathbb{E}^m_\mathbb{E} \). If the position vector field \(\mathbf{x} \) is either space-like or time-like, then the position vector field \(\mathbf{x} \) of \(M \) satisfies \(\mathbf{x} = \mathbf{x}^N \) identically if and only if \(M \) lies in one of the following hypersurfaces of \(\mathbb{E}^m_\mathbb{E} \):

1. a pseudo-sphere \(S_i^{m-1}(c^2) \); or
2. a pseudo-hyperbolic space \(H_i^{m-1}(-c^2) \) whenever \(i > 1 \); or
3. a hyperbolic space \(H_i^m(-c^2) \) whenever \(i = 1 \),

where \(c \) is a positive number.

Proof. Let \(x : M \rightarrow \mathbb{E}^{m}_\mathbb{E} \) be an isometric immersion of a pseudo-Riemannian \(n \)-manifold into \(\mathbb{E}^m_\mathbb{E} \) with space-like or time-like position vector field. If \(x = x^N \) holds identically, then we get from (3.8) that

\[
Z \langle x, x \rangle = 2 \langle \nabla_z x, x \rangle = 2 \langle Z, x^N \rangle = 0
\]

for any \(Z \in TM \). Thus \(M \) lies in one of the three hypersurfaces of \(\mathbb{E}^m_\mathbb{E} \).

The converse is easy to verify. \(\square \)

In views of Lemma 3.1 and Lemma 3.2 we make the following.

Definition 3.2. A rectifying submanifold \(M \) of \(\mathbb{E}^m_\mathbb{E} \) is called proper if its position vector field \(\mathbf{x} \) satisfies \(\mathbf{x} \neq \mathbf{x}^T \) and \(\mathbf{x} \neq \mathbf{x}^N \) at every point on \(M \).

In this article, we are only interested on proper rectifying submanifolds of \(\mathbb{E}^m_\mathbb{E} \) in views of Lemma 3.1 and Lemma 3.2.

For the proof of our main theorem we also need the following lemma.

Lemma 3.3. Let \(M \) be a pseudo-Riemannian submanifold of \(\mathbb{E}^m_\mathbb{E} \). If \(M \) is proper rectifying, then \(\langle x^N, x^N \rangle \) is constant on \(M \).

Proof. Let \(x : M \rightarrow \mathbb{E}^m_\mathbb{E} \) be an isometric immersion of a Riemannian \(n \)-manifold into \(\mathbb{E}^m_\mathbb{E} \). Consider the orthogonal decomposition

\[
x = x^T + x^N \tag{3.9}
\]

of the position vector field \(x \) of \(M \) in \(\mathbb{E}^m_\mathbb{E} \). It follows from (3.9) and the formula of Gauss and the formula of Weingarten that

\[
Z = \nabla_Z x = \nabla_Z x^T + h(Z, x^T) - A_{x^N} Z + D_{x^N} x^N
\]

(3.10)

for any \(Z \in TM \). By comparing the normal components in (3.10), we find

\[
D_{x^N} x^N = -h(Z, x^T).
\]

(3.11)

Therefore we obtain

\[
Z \langle x^N, x^N \rangle = 2 \langle D_{x^N} x^N, x^N \rangle = -\langle h(Z, x^T), x \rangle = 0,
\]

(3.12)

where we have used (2.11) in Definition 2.1. Since (3.12) holds identically for any \(Z \in TM \), we conclude that \(\langle x^N, x^N \rangle \) is constant on \(M \). \(\square \)

Remark 3.2. A submanifold \(M \) of \(\mathbb{E}^m_\mathbb{E} \) is called a \(T \)-submanifold (respectively, \(N \)-submanifold) if its position vector field \(x \) satisfies \(\langle x^T, x^T \rangle = \text{constant} \) (respectively, \(\langle x^N, x^N \rangle = \text{constant} \)) (cf. [2, 4]). Obviously, Lemma 3.3 implies that every proper rectifying pseudo-Riemannian submanifold of \(\mathbb{E}^m_\mathbb{E} \) is an \(N \)-submanifold.
4. Characterization of rectifying submanifolds in \mathbb{E}^m_1

The following result provides a very simple characterization of rectifying submanifolds.

Theorem 4.1. If the position vector field x of a pseudo-Riemannian submanifold M in \mathbb{E}^m_1 satisfies $x^N \neq 0$, then M is a proper rectifying submanifold if and only if x^T is a concurrent vector field on M.

Proof. Let M be a space-like submanifold of \mathbb{E}^m_1. Then (3.10) holds. After comparing the tangential components in (3.10), we obtain

$$A_{x^N} Z = \nabla_Z x^T - Z. \tag{4.1}$$

Assume that M is a proper rectifying submanifold of \mathbb{E}^m_1. Then we have $x^T \neq 0$ and $x^N \neq 0$. Moreover, it follows from the Definition 2.1 that

$$\langle A_{x^N} X, Y \rangle = (x, h(X, Y)) = 0 \tag{4.2}$$

for $X, Y \in TM$. Since M is space-like, we find from (4.1) that $A_{x^N} = 0$. Therefore (3.8) yields

$$\nabla_Z x^T = Z, \tag{4.3}$$

for any $Z \in TM$. Consequently, x^T is a concurrent vector field on M.

Conversely, if x^T is a concurrent vector field on M, then (3.7) and (4.1) give $A_{x^N} = 0$. Therefore we obtain (4.3). Consequently, M is a proper rectifying submanifold due to $x^N \neq 0$ by assumption. \hfill \blacksquare

The next result shows that every proper rectifying space-like submanifold is a warped product.

Theorem 4.2. Let M be a proper rectifying space-like submanifold M of \mathbb{E}^m_1. Then M is a warped product manifold $I \times_s F$ with warping metric

$$g = ds^2 + s^2 g_F, \tag{4.4}$$

such that $x^T = s \partial/\partial s$ and g_F is the metric tensor of a Riemannian manifold F.

Proof. Let M be a proper rectifying space-like submanifold of \mathbb{E}^m_1. Then we have $x^T \neq 0$ and $x^N \neq 0$. Thus we may put

$$x^T = \rho e_1, \quad \rho = |x^T| > 0, \tag{4.5}$$

where e_1 is a space-like unit vector field. We may extend e_1 to a local orthonormal frame e_1, e_2, \ldots, e_n on M.

Obviously, it follows from (4.5) that $\rho = (x, e_1)$. Thus, by taking the derivative of ρ with respect to e_j for $j = 1, \ldots, n$ and using (2.3) and (3.8), we find

$$e_j \rho = \delta_{1j} + (x, h(e_1, e_j)), \tag{4.6}$$

where $\delta_{ij} = 1$ or 0 depending on $i = j$ or $i \neq j$. Combining (2.11) and (4.6) gives

$$e_1 \rho = 1, \quad e_2 \rho = \cdots = e_n \rho = 0.$$

Therefore we get $\rho = \rho(s)$ and $\rho'(s) = 1$, which imply $\rho(s) = s + b$ for some real number b. Hence, after applying a suitable translation on s if necessary, we have $\rho = s$. Therefore, we obtain

$$x^T = se_1 = s \frac{\partial}{\partial s}. \tag{4.7}$$

Since M is a proper rectifying space-like submanifold, Theorem 4.1 implies that $x^T = se_1$ is a concurrent vector field. Thus we find from (4.3) that

$$e_1 = \nabla_{e_1} x^T = \nabla_{e_1} se_1 = e_1 + s \nabla_{e_1} e_1, \tag{4.8}$$

which implies $\nabla_{e_1} e_1 = 0$. Therefore the integral curves of e_1 are geodesics of M. Consequently, the distribution \mathcal{D}_1 spanned by e_1 is a totally geodesic foliation.
From (4.3) we also find
\[e_i = \nabla e_i x^T = s \nabla e_i e_1, \quad i = 2, \ldots, n, \] (4.9)
which gives
\[\omega^i_j(e_i) = \frac{\delta_{ij}}{s}, \quad i, j = 2, \ldots, n. \] (4.10)
We conclude from (4.10) that the distribution \(\mathcal{D} \) is integrable whose leaves are totally umbilical hypersurfaces of \(M \). Moreover, it follows from (4.10) that the mean curvature of leaves of \(\mathcal{D} \) are given by \(s^{-1} \). Since the leaves of \(\mathcal{D} \) are hypersurfaces, it follows that the mean curvature vector field of the leaves of \(\mathcal{D} \) is parallel in the normal bundle in \(M \). Therefore the distribution \(\mathcal{D} \) is a spherical foliation. Consequently, by applying a result of [12] (or Theorem 4.4 of [5, page 90]) we conclude that \(M \) is locally a warped product \(I \times_s F \), where \(F \) is a Riemannian \((n - 1) \)-manifold. Therefore the metric tensor \(g \) of \(M \) takes the form (4.4).

5. Main result

The main result of this article is the following classification theorem.

Theorem 5.1. Let \(M \) be a proper rectifying space-like submanifold of the pseudo-Euclidean \(n \)-space \(\mathbb{E}^m_1 \) with index \(i > 0 \). If \(\text{codim} \, M \geq 2 \), then one of the following four cases occurs:

(a) There exist a positive number \(c \) and local coordinate systems \(\{s, u_2, \ldots, u_n\} \) on \(M \) such that the immersion of \(M \) in \(\mathbb{E}^m_1 \) is given by
\[x(s, u_2, \ldots, u_n) = \sqrt{s^2 + c^2} \, Y(s, u_2, \ldots, u_n), \] (5.1)
where \(Y = Y(s, u_2, \ldots, u_n) \) defines a space-like submanifolds of the unit pseudo-sphere \(S_i^{m-1}(1) \subset \mathbb{E}^m_1 \) such that the induced metric \(g_Y \) of \(Y \) is given by
\[g_Y = \frac{c^2}{(s^2 + c^2)^2} ds^2 + \frac{s^2}{s^2 + c^2} \sum_{j,k=2}^n g_{jk}(u_2, \ldots, u_n) du_jdu_k. \] (5.2)

(b) There exist local coordinate systems \(\{s, u_2, \ldots, u_n\} \) on \(M \) such that the immersion of \(M \) in \(\mathbb{E}^m_1 \) is given by
\[x(s, u_2, \ldots, u_n) = s W(s, u_2, \ldots, u_n), \quad s \neq 0, \] (5.3)
where \(W = W(s, u_2, \ldots, u_n) \) lies in the unit pseudo-sphere \(S_i^{m-1}(1) \subset \mathbb{E}^m_1 \) such that \(W_s \) is a light-like normal vector field of \(M \) and the induced metric tensor of \(W \) is of the following degenerate form:
\[g_W = \sum_{j,k=2}^n g_{jk}(u_2, \ldots, u_n) du_jdu_k \] (5.4)
with positive definite \((g_{jk}) \), \(j, k = 2, \ldots, n \).

(c) There exist a positive number \(c \) and local coordinate systems \(\{s, u_2, \ldots, u_n\} \) on \(M \) such that the immersion of \(M \) in \(\mathbb{E}^m_1 \) is given by
\[x(s, u_2, \ldots, u_n) = \sqrt{s^2 - c^2} \, U(s, u_2, \ldots, u_n), \quad s^2 > c^2, \] (5.5)
where \(U = U(s, u_2, \ldots, u_n) \) lies in the unit pseudo-sphere \(S_i^{m-1}(1) \subset \mathbb{E}^m_1 \) such that the induced metric \(g_U \) of \(U \) is given by
\[g_U = \frac{c^2}{(s^2 - c^2)^2} ds^2 + \frac{s^2}{s^2 - c^2} \sum_{j,k=2}^n g_{jk}(u_2, \ldots, u_n) du_jdu_k. \] (5.6)

(d) There exist a positive number \(c \) and local coordinate systems \(\{s, u_2, \ldots, u_n\} \) on \(M \) such that the immersion of \(M \) in \(\mathbb{E}^m_1 \) is given by
\[x(s, u_2, \ldots, u_n) = \sqrt{c^2 - s^2} \, V(s, u_2, \ldots, u_n), \quad c^2 > s^2, \] (5.7)
where \(V = V(s, u_2, \ldots, u_n) \) lies in the pseudo-hyperbolic space \(H_i^{m-1}(-1) \subset \mathbb{E}^m_1 \) for \(i > 1 \) (respectively, hyperbolic space \(H_i^{m-1}(-1) \subset \mathbb{E}^m_1 \) for \(i = 1 \)) such that the induced metric \(g_V \) of \(V \) is given by
\[g_V = \frac{c^2}{(s^2 - c^2)^2} ds^2 + \frac{s^2}{c^2 - s^2} \sum_{j,k=2}^n g_{jk}(u_2, \ldots, u_n) du_jdu_k. \] (5.8)
Conversely, each of the four cases above gives rise to a proper rectifying space-like submanifold of \mathbb{E}^m_i.

Proof. Assume that M is a proper rectifying space-like submanifold of \mathbb{E}^m_i with $m \geq 2 + \dim M$. Then we have $x^T \neq 0$ and $x^N \neq 0$. Thus we may put

$$x^T = \rho e_1, \quad \rho = |x^T| > 0,$$

(5.9)

where e_1 is a space-like unit vector field. We may extend e_1 to a local orthonormal frame e_1, e_2, \ldots, e_n on M. Clearly, we have $\langle x, e_j \rangle = 0$ for $j = 2, \ldots, n$.

Define the connection forms $\omega^j_i, i, j = 1, \ldots, n$, by

$$\nabla_x e_i = \sum_{j=1}^n \omega^j_i (x)e_j, \quad i = 1, \ldots, n,$$

(5.10)

where ∇ is the Levi-Civita connection of M.

For $j, k = 2, \ldots, n$, we find

$$0 = e_k (x, e_j) = \delta_{jk} + \langle x, \nabla_{e_k} e_j \rangle + \langle x, h(e_j, e_k) \rangle = \delta_{jk} + \langle x, \nabla_{e_k} e_j \rangle,$$

(5.11)

where we have applied (2.11) from Definition 2.1, (2.3) and (3.8).

Since $h(X, Y)$ is symmetric in X and Y, we derive from (5.10) and (5.11) that

$$\omega^j_i (e_k) = \omega^k_i (e_j), \quad j, k = 2, \ldots, n.$$

(5.12)

It follows from (5.10), (5.12) and the Frobenius theorem that the distribution \mathcal{D} spanned by e_2, \ldots, e_n is an integrable distribution.

On the other hand, the distribution $\mathcal{D}^\perp = \text{Span} \{e_1\}$ is also integrable since it is of rank one. Therefore, there exists a local coordinate system $\{s, u_2, \ldots, u_n\}$ on M such that

$$e_1 = \frac{\partial}{\partial s} \text{ and } \mathcal{D} = \text{Span} \left\{ \frac{\partial}{\partial u_2}, \ldots, \frac{\partial}{\partial u_n} \right\}.$$

Obviously, it follows from (5.9) that $\rho = \langle x, e_1 \rangle$. Now, by taking the derivative of ρ with respect to e_j for $j = 1, \ldots, n$ and using (2.3) and (3.8), we find

$$e_j \rho = \delta_{1j} + \langle x, h(e_1, e_j) \rangle.$$

(5.13)

After combining (2.11) and (5.13) we find $e_1 \rho = 1$ and $e_2 \rho = \cdots = e_n \rho = 0$. Therefore we have

$$\rho = \rho(s), \quad \rho'(s) = 1$$

which imply

$$\rho(s) = s + b.$$

(5.14)

for some real number b. Consequently, after applying a suitable translation on s if necessary, we obtain $\rho = s$. Consequently, (5.9) implies that the position vector field satisfies

$$x = s e_1 + x^N.$$

(5.15)

Moreover, since M is a proper rectifying submanifold, Lemma 3.3 implies that $\langle x^N, x^N \rangle$ is constant on M. Therefore we find

$$\langle x, x \rangle = \begin{cases}
 s^2 + c^2, & \text{if } \langle x^N, x^N \rangle > 0, \\
 s^2, & \text{if } \langle x^N, x^N \rangle = 0, \\
 s^2 - c^2, & \text{if } \langle x^N, x^N \rangle < 0,
\end{cases}$$

(5.16)

where c is a positive number.

Now, we divide the proof of the theorem into three cases.

Case (1): $\langle x, x \rangle = s^2 + c^2$ with $c > 0$. In this case, we may put

$$x(s, u_2, \ldots, u_n) = \sqrt{s^2 + c^2} Y(s, u_2, \ldots, u_n),$$

(5.17)
for some \mathbb{E}^m-valued function $Y = Y(s, u_2, \ldots, u_n)$ satisfying $\langle Y, Y \rangle = 1$. Therefore the image of Y lies in the pseudo-sphere $S^{m-1}_i(1) \subset \mathbb{E}^{m-1}$. It follows from (5.17) that

$$
\frac{\partial x}{\partial s} = \frac{s}{\sqrt{s^2 + c^2}} Y + \sqrt{s^2 + c^2} Y_s,
\frac{\partial x}{\partial u_j} = \sqrt{s^2 + c^2} Y_{u_j}, \ j = 2, \ldots, n.
$$

Using (5.18) together with the fact that $e_1 = \partial x/\partial s$ is a unit vector field orthogonal to the distribution \mathcal{D}, we derive that

$$
\langle Y_s, Y_s \rangle = c^2 (s^2 + c^2), \ \langle Y_s, Y_{u_j} \rangle = 0, \ j = 2, \ldots, n.
$$

Therefore the metric tensor g_Y of Y induced from $S^{m-1}_i(1)$ takes the following form:

$$
g_Y = \frac{c^2}{(s^2 + c^2)^2} ds^2 + \frac{s^2}{s^2 + c^2} \sum_{j,k=2}^n g_{jk}(s, u_2, \ldots, u_n) du_j du_k,
$$

where (g_{jk}) is positive definite. In particular, (5.17) and (5.20) show that the submanifold defined by Y is also space-like.

Now, by applying (5.18) and (5.20) we know that the metric tensor g of M is of the form:

$$
g = ds^2 + s^2 \sum_{j,k=2}^n g_{jk}(s, u_2, \ldots, u_n) du_j du_k.
$$

After a straightforward long computation we find from (5.21) that the Levi-Civita connection of M satisfies

$$
\nabla X \frac{\partial}{\partial s} = 0,
\nabla \frac{\partial}{\partial u_j} = \frac{1}{s} \frac{\partial}{\partial u_j} + \frac{1}{2} \sum_{k=2}^n \left(\sum_{t=2}^n g_{kt} \frac{\partial g_{jt}}{\partial s} \right) \frac{\partial}{\partial u_k}, \ j = 2, \ldots, n,
$$

where (g^{jk}) is the inverse matrix of (g_{ij}). Because M is a proper rectifying space-like submanifold of \mathbb{E}^m, it follows from Theorem 4.1 that

$$
\nabla \frac{\partial}{\partial u_j} x^T = \frac{\partial}{\partial u_j}, \ j = 2, \ldots, n.
$$

Therefore, after applying (4.7), (5.22) and (5.23) we obtain

$$
\sum_{t=2}^n g^{kt} \frac{\partial g_{jt}}{\partial s} = 0, \ j, k = 2, \ldots, n.
$$

Because (g^{jk}) is positive definite, system (5.24) implies

$$
\frac{\partial g_{jk}}{\partial s} = 0, \ j, t = 2, \ldots, n.
$$

Therefore (5.31) must take the form of (5.4). Consequently, (5.20) reduces to (5.2).

Conversely, let us consider a space-like submanifold M of \mathbb{E}^m defined by (5.1) satisfying $\langle Y, Y \rangle = 1$ such that the metric tensor g_Y is given by (5.2). Then we obtain (5.18) and (5.19) from (5.1). It follows from (5.2), (5.18) and (5.19) that the metric tensor g of M is given by

$$
g = ds^2 + s^2 \sum_{j,k=2}^n g_{jk}(u_2, \ldots, u_n) du_j du_k.
$$

Now, it is straightforward to verify from (5.25) that the Levi-Civita connection of M satisfies

$$
\nabla X \frac{\partial}{\partial s} = 0, \ \nabla \frac{\partial}{\partial u_j} = \frac{1}{s} \frac{\partial}{\partial u_j}, \ j = 2, \ldots, n.
$$
Since \(\langle Y, Y \rangle = 1\), (5.1) implies \(\langle x, Y_u \rangle = 0\) for \(j = 2, \ldots, n\). Thus we find from (5.18) that
\[
\langle x, x_{u_j} \rangle = 0, \quad j = 2, \ldots, n.
\]
(5.27)

Therefore, we obtain \(x^T = s \frac{\partial}{\partial s}\). Now, by applying (5.26) it is easy to verify that \(x^T\) is a concurrent vector field on \(M\). Moreover, it is direct to show that the normal component of \(x\) is given by
\[
x^N = \frac{c^2}{\sqrt{s^2 + c^2}} Y - s \frac{\partial}{\partial s} Y_s,
\]
which is always non-zero everywhere on \(M\). Consequently, the immersion defined by case (a) gives rise to a proper rectifying space-like submanifold of \(E^n_m\).

Case (2): \(\langle x, x \rangle = s^2, s \neq 0\). In this case, \(x^N\) is a light-like normal vector field of \(M\).

We put
\[
x(s, u_2, \ldots, u_n) = s W(s, u_2, \ldots, u_n), \quad s \neq 0,
\]
(5.28)

for some \(\mathbb{E}^m\)-valued function \(W = W(s, u_2, \ldots, u_n)\) satisfying \(\langle W, W \rangle = 1\). Therefore the image of \(W\) lies in the pseudo-sphere \(S^{m-1}_i \subset \mathbb{E}^{m-1}_i\).

It follows from (5.28) that
\[
\frac{\partial x}{\partial s} = W + s W_s, \quad \frac{\partial x}{\partial u_j} = s W_{u_j}, \quad j = 2, \ldots, n.
\]
(5.29)

Using (5.29), \(\langle W, W \rangle = 1\) and the fact that \(e_1 = \partial x/\partial s\) is a unit vector field orthogonal to the distribution \(\mathcal{D}\), we derive that
\[
\langle W_s, W_s \rangle = 0, \quad \langle W_s, W_{u_j} \rangle = 0, \quad j = 2, \ldots, n.
\]
(5.30)

If we put \(g_{jk} = \langle W_{u_j}, W_{u_k} \rangle\), then it follows from (5.29) and (5.30) that the metric tensor \(g^W\) of \(W\) is a generate one given by
\[
g^W = \sum_{j,k=2}^n g_{jk}(s, u_2, \ldots, u_n) du_j du_k.
\]
(5.31)

Then it follows from (5.28) and (5.31) that the induced metric \(g\) of \(M\) is given by
\[
g = ds^2 + s^2 \sum_{j,k=2}^n g_{jk}(s, u_2, \ldots, u_n) du_j du_k.
\]
(5.32)

Since \(M\) is a proper rectifying space-like submanifold of \(\mathbb{E}^m_i\), it follows from Theorem 4.1 that \(x^T\) is a concurrent vector field. Therefore, we may apply the same argument as in Case (1) to conclude that \(\frac{\partial g_{jk}}{\partial s} = 0\) for \(j, t = 2, \ldots, n\). Therefore (5.31) must take the form of (5.4).

Conversely, let us consider an immersion \(x : M \to \mathbb{E}^m_i\) of a Riemannian \(n\)-manifold \(M\) into \(\mathbb{E}^m_i\) given by
\[
x(s, u_2, \ldots, u_n) = s W(s, u_2, \ldots, u_n), \quad \langle W, W \rangle = 1, \quad s \neq 0,
\]
(5.33)
such that \(W_s\) is a light-like normal vector field and the metric tensor of \(W\) is of the following degenerate form:
\[
g^W = \sum_{j,k=2}^n g_{jk}(s, u_2, \ldots, u_n) du_j du_k
\]
(5.34)

with positive definite matrix \((g_{jk})\), \(j, k = 2, \ldots, n\). Then it follows from (5.33) and (5.34) that the induced metric \(g\) of \(M\) is given by
\[
g = ds^2 + s^2 \sum_{j,k=2}^n g_{jk}(u_2, \ldots, u_n) du_j du_k.
\]
(5.35)

From (5.34) we get
\[
x_s = W + s W_s, \quad x_{u_j} = s W_{u_j}, \quad j = 2, \ldots, n.
\]
(5.36)
Thus we find from (5.33) and (5.36) that

\[x = sx_s - s^2 W_s. \]

Because \(W_s \) is a light-like normal vector field and \(x_s \) is tangent to \(M \), we obtain from (5.37) that

\[x^T = sx_s \quad \text{and} \quad x^N = -s^2 W_s \neq 0. \]

(5.38)

Now, we may derive from (5.35) and (5.38) as before that \(x^T \) is a concurrent vector field on \(M \). Consequently, \(M \) is a rectifying space-like submanifold of \(\mathbb{E}^m_n \) according to Theorem 4.1. This gives Case (b) of the theorem.

Case (3): \(\langle x, x \rangle = s^2 - c^2 \neq 0 \). By applying a method similar to Case (1), we will obtain either Case (c) or Case (d) according to \(s^2 > c^2 \) or \(s^2 < c^2 \), respectively.

References

Affiliations

B.-Y. Chen
Address: Michigan State University, Department of Mathematics, 619 Red Cedar Road, East Lansing, Michigan 48824, U.S.A.
E-mail: bychen@math.msu.edu

Yun Myung Oh
Address: Andrews University, Department of Mathematics, Berrien Spring, Michigan 49104, U.S.A.
E-mail: ohy@andrews.edu

www.iejgeo.com